Differential functions of triplicated repeats suggest two independent roles for the receptor-associated protein as a molecular chaperone.
نویسندگان
چکیده
The 39-kDa receptor-associated protein (RAP) is a molecular chaperone for the low density lipoprotein receptor-related protein (LRP), a large endocytic receptor that binds multiple ligands. The primary function of RAP has been defined as promotion of the correct folding of LRP, and prevention of premature interaction of ligands with LRP within the early secretory pathway. Previous examination of the RAP sequence revealed an internal triplication. However, the functional implication of the triplicated repeats was unknown. In the current study using various RAP and LRP domain constructs, we found that the carboxyl-terminal repeat of RAP possesses high affinities to each of the three ligand-binding domains on LRP, whereas the amino-terminal and central repeats of RAP exhibit only low affinity to the second and the fourth ligand-binding domains of LRP, respectively. Using truncated soluble minireceptors of LRP, we identified five independent RAP-binding sites, two on each of the second and fourth, and one on the third ligand-binding domain of LRP. By coexpressing soluble LRP minireceptors and RAP repeat constructs, we found that only the carboxyl-terminal repeat of RAP was able to promote the folding and subsequent secretion of the soluble LRP minireceptors. However, when the ability of each RAP repeat to inhibit ligand interactions with LRP was examined, differential effects were observed for individual LRP ligands. Most striking, both the amino-terminal and central repeats, but not the carboxyl-terminal repeat, of RAP inhibited the interaction of alpha2-macroglobulin with LRP. These differential functions of the RAP repeats suggest that the roles of RAP in the folding of LRP and in the prevention of premature interaction of ligand with the receptor are independent.
منابع مشابه
Role of Molecular Interactions and Oligomerization in Chaperone Activity of Recombinant Acr from Mycobacterium tuberculosis
Background: The chaperone activity of Mycobacterium tuberculosis Acr is an important function that helps to prevent misfolding of protein substrates inside the host, especially in conditions of hypoxia. Objectives: The aim of this study was to establish the correlation of structure and function of recombinant Acr proteins both before and after ge...
متن کاملRole of Helicobacter pylori on differential expression of angiogenic markers in gastric adenocarcinoma
Animal studies showed that male gastric tissues respond more rapidly to Helicobacter pylori (H.pylori) infection but the possible mechanisms remained unclear. There is no data about gender specific activity of Androgen receptor (AR) as an independent unfavorable prognostic factor in gastric cancer and its interactions with H.pylori and angiogenesis in both genders. To compare the pathogenesis o...
متن کاملMolecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers
Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...
متن کاملArabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases
The hydrophobic proteins of plant plasma membrane still remain largely unknown. For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...
متن کاملReceptor-associated protein (RAP) has two high-affinity binding sites for the low-density lipoprotein receptor-related protein (LRP): consequences for the chaperone functions of RAP
RAP (receptor-associated protein) is a three domain 38 kDa ER (endoplasmic reticulum)-resident protein that is a chaperone for the LRP (low-density lipoprotein receptor-related protein). Whereas RAP is known to compete for binding of all known LRP ligands, neither the location, the number of binding sites on LRP, nor the domains of RAP involved in binding is known with certainty. We have system...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 272 16 شماره
صفحات -
تاریخ انتشار 1997